Normas Técnicas Utilizadas Bobinas Galvanizadas (Zincadas)

5. NORMAS DOS AÇOS GALVANIZADOS POR IMERSÃO A QUENTE

Os aços galvanizados, devido as suas excelentes características superficiais, são utilizados em vários segmentos industriais, particularmente pela indústria automotiva.

Esses produtos são usados para aplicações que exigem elevado grau de estampagem, facilidade de soldagem e de tratamento superficial antes da pintura. A SETEFER fornece aços galvanizados para aplicação em uso geral, estampagem e uso estrutural.

Os tipos de revestimentos que podem ser encontradas nos aços galvanizados por imersão a quente são:

GI: Revestimento de Zinco Puro (Zn)

GA: Revestimento com Ligas Zinco+Ferro (Zn+Fe)

Galvalume: Revestimento com Liga Alumínio+Zinco+Silício (Al+Zn-Si)

A SETEFER inova constantemente para superar sempre as expectativas dos seus clientes.

A seguir citaremos as normas, às quais a SETEFER fornece seus aços laminados a frio, lembrando que as normas são citadas para efeito de referencia. Para informações adicionais, consulte a norma ou a equipe da Qualidade SETEFER.

5.1 Aços Para Uso Geral.

São aços que se destinam à conformação simples e suas principais aplicações estão na construção civil, tubos, componentes, peças, aplicações onde não se necessita de aprimoramento ou nível de propriedades mecânicas.

Na maioria das especificações é garantida apenas a composição química desses aços.

	Composição Química (%)							Propriedades Mecânicas				
Norma	Grau	C máx.	Mn máx.	P máx.	S máx.	Al mín.	LE (MPa)	LR (MPa)	Along. Mín.	Dobramento a 180° Calço em Função da Espessura (E) em mm		
NBR 7008	ZC	0,150	0,600	0,120	0,035	-	-	-	-	-		
	CS-A	0,100		0,030			170 - 380	-	20			
ASTM A 653	CS-B	0,020 - 0,150	0,600	0,030	0,035	-	205 - 380	-	20	-		
000	CS-C	0,080		0,100			170 - 410	-	15			
EN 10327	DX51D	0,120	0,600	0,100	0,045			270 - 500	22			
EN 10321	FePO2G	0,120	0,600	0,100	0,045	-	-	270 - 300	22	-		

^{*}Na norma NBR 7008 quando não há valor especificado, os teores de Alumínio encontrados devem constar no certificado.

^{*}Normas citadas para efeito de referencia. Para informações adicionais, consulte a norma ou a equipe da Qualidade SETEFER.

5.2 Aços Para Estampagem.

São aços indicados para a fabricação de peças estampadas, desde deformações mais leves até as mais severas. Alterações em suas composições químicas proporcionam diversos graus de estampabilidade, adequados às aplicações especificas.

		C	omposi	ção Química (%)			Propried	dades Me	ecânicas
Norma	Grau	C máx.	Mn máx.	P máx.	S máx.	Al mín.	LE (MPa)	LR (MPa)	Along. Mín.	Dobramento a 180° Calço em Função da Espessura (E) em mm
	ZE	0,100	0,450	0,030	0,030	-	140 - 300	420 máx.	26	-
	ZEE G1	0,080	0,450	0,030	0,030	0,010	140 - 260	380 máx.	31	-
NBR 7008	ZEE G2	0,080	0,450	0,030	0,020	0,010	140 - 220	350 máx.	37	-
	ZEE G3	0,010	0,300	0,020	0,020	0,010	140 - 200	350 máx.	40	-
	ZEE G4	0,010	0,300	0,020	0,020	0,010	120 - 180	350 máx.	40	-
	FS-A	0,100	0,500	0,020	0,035	-	170 - 310	-	26	-
	FS-B	0,020 - 0,100	0,500	0,020	0,030	-	170 - 310	-	26	-
ASTM A 653	DDS-A	0,060	0,500	0,020	0,025	0,010	140 - 240	-	32	-
	DDS-C	0,020	0,500	0,020 - 0,100	0,025	0,010	170 - 280	-	32	-
	EDDS	0,020	0,400	0,020	0,020	0,010	105 - 170	-	40	-
	DX52D	0,120	0,600	0,100	0,045	-	140 - 300	270 - 420	26	-
	DX53D	0,120	0,600	0,100	0,045	-	140 - 260	270 - 380	30	-
	DX54D	0,120	0,600	0,100	0,045	-	120 - 220	260 - 350	36	-
EN 10327	DX56D	0,120	0,600	0,100	0,045	-	120 - 180	260 - 350	39	-
LIN 10327	FePO3G	0,120	0,600	0,100	0,045	-	140 - 300	270 - 420	26	-
	FePO5G	0,120	0,600	0,100	0,045	-	140 - 260	270 - 380	30	-
	FePO6G	0,120	0,600	0,100	0,045	-	120 - 220	260 - 350	36	-
	FePO7G	0,120	0,600	0,100	0,045	-	120 - 180	260 - 350	39	-

^{*}Na norma NBR 7008 quando não há valor especificado, os teores de Alumínio encontrados devem constar no certificado.

5.3 Aços Estruturais.

São aços que possuem alta resistência mecânica e são indicados principalmente para usos planos e em aplicações que requeiram dobramentos simples, corrugações ou estampagem leve.

			Composi	ção Química ((%)			Propried	dades Me	ecânicas
Norma	Grau	C máx.	Mn máx.	P máx.	S máx.	Al mín.	LE (MPa) mín.	LR (MPa) mín.	Along. Mín.	Dobramento a 180° Calço em Função da Espessura (E) em mm
	ZAR 230	0,200	-	0,040	0,040	-	230	310	22	-
	ZAR 250	0,200	-	0,100	0,040	-	250	360	17	-
	ZAR 280	0,200	-	0,100	0,040	-	280	380	16	-
NBR 7008	ZAR 320	0,200	-	0,100	0,040	-	320	390	14	-
	ZAR 345	0,200	-	0,200	0,040	-	345	430	12	-
	ZAR 400	0,200	-	0,200	0,040	-	400	450	10	-
	ZAR 550	0,200	-	0,200	0,040	-	550	570	-	-
	SS230	0,200	1,350	0,100	0,040	-	230	310	20	-
ASTM A	SS255	0,200	1,350	0,100	0,040	-	255	360	18	-
653	SS275	0,250	1,350	0,100	0,040	-	275	380	16	-
	SS340 C1	0,250	1,350	0,200	0,040	-	340	450	12	-

^{*}Normas citadas para efeito de referencia. Para informações adicionais, consulte a norma ou a equipe da Qualidade SETEFER.

SS340 C2	0,250	1,350	0,200	0,040	-	340	-	12	=
SS340 C3	0,250	1,350	0,040	0,040	-	340	480	12	-
SS340 C4	0,250	1,350	0,200	0,040	-	340	410	12	-
SS380	0,250	1,350	0,040	0,040	-	380	480	11	-
SS550 C1	0,200	1,350	0,040	0,040	-	550	570	-	-
SS550 C2	0,020	1,350	0,050	0,020	-	550	570	-	-

^{*}Na norma NBR 7008 quando não há valor especificado, os teores de Manganês e Alumínio encontrados devem constar no certificado.

5.4 Galvalume

São aços que possuem como principal característica a resistência térmica, podendo ser aplicado em diversos segmentos, desde construção civil, passando por setores automotivos até a linha branca. A maior refletividade térmica dos aços Galvalume resulta em maior eficiência térmica, proporcionando significativa redução de custos.

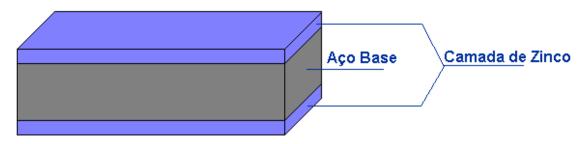
			Com	oosição C	luímica (%)		Propried	dades Mecâ	nicas
Norma	Aplicação	Grau	C máx.	Mn máx.	P máx.	S máx.	LE (MPa) mín.	LR (MPa) mín.	Along. Mín.
		CSA	0,100	0,600	0,030	0,035	205 - 410	-	20
	Uso Geral	CSB	0,020 - 0,150	0,600	0,030	0,035	245 - 410	-	20
		CSC	0,080	0,600	0,100	0,035	205 - 450	-	15
	Estamana	FS	0,020 - 0,100	0,500	0,020	0,030	170 - 275	-	24
	Estampagem	DS	0,060	0,500	0,020	0,025	140 - 240	-	30
ASTM A		SS33 (230)	0,200	-	0,040	0,040	230	310	20
792		SS37 (255)	0,200	-	0,100	0,040	255	360	18
		SS40 (275)	0,250	-	0,100	0,040	270	380	16
	Estrutural	SS50 (340) C1	0,250	-	0,200	0,040	345	450	12
		SS50 (340) C2	0,250	-	0,200	0,040	345	-	12
		SS50 (340) C4	0,250	-	0,200	0,040	345	415	12
		SS80 (550)	0,200	-	0,040	0,040	550	570	-

^{*}Normas citadas para efeito de referencia. Para informações adicionais, consulte a norma ou a equipe da Qualidade SETEFER.

5.5 Revestimentos.

A zincagem é um dos processos mais efetivos e econômicos empregados para proteger o aço contra corrosão atmosférica. A proteção do aço pelo revestimento de zinco se desenvolve segundo dois mecanismos: proteção por barreira exercida pela camada de revestimento e proteção galvânica ou sacrificial, operante nos casos de exposição simultânea do par aço-zinco (arranhões, cortes e bordas).

A zincagem é realizada através do processo de imersão a quente, o mesmo consiste em mergulhar o material em um fosso com zinco em estado liquido de maneira contínua. As ligas podem ser encontradas da seguinte forma:


GI: Revestimento de Zinco Puro (Zn)

GA: Revestimento com Ligas Zinco+Ferro (Zn+Fe)

Galvalume: Revestimento com Liga Alumínio+Zinco+Silício (Al+Zn-Si)

^{*}Normas citadas para efeito de referencia. Para informações adicionais, consulte a norma ou a equipe da Qualidade SETEFER.

O fator que determina a resistência à corrosão dos materiais galvanizados é a quantidade de zinco depositado em sua superfície conforme a imagem a seguir:

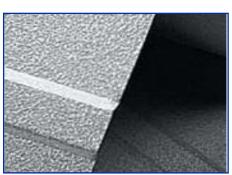
revestimento de 100 g/m² corresponde a uma espessura de aproximadamente 7,1 µm (7,1 mícron = 0,0071 mm) por face. No revestimento Galvalume uma massa de revestimento de 100 g/m² corresponde a uma espessura de aproximadamente 26,636 µm (26,636 mícron = 0,026636 mm).

A tabela a seguir indica a massa mínima de revestimento depositado na superfície do aço base de acordo com a designação do revestimento ou aplicação a qual o material será submetido.

Norma	Liga	Designação do	Massa Mínima d (g/i		Designação Antiga (NBR
Norma	Liga	Revestimento	Ensaio Triplo	Ensaio Individual	7008)
		Z 85	85	75	Х
		Z 100	100	85	Z
		Z 140	140	120	Z
		Z 180	180	150	Α
	GI	Z 225	225	195	Α
		Z 275	275	235	В
NBR 7008		Z 350	350	300	С
		Z 450	450	385	D
		Z 600	600	510	G
	GA	ZF 85	85	45	Х
		ZF 100	100	85	Z
		ZF 140	140	120	Z
		ZF 180	180	150	Α
		Z 120	120	90	-
		Z 180	180	150	-
		Z 275	275	235	-
	GI	Z 305	305	275	-
		Z 500	500	425	-
		Z 550	550	475	-
ASTM A 653		Z 600	600	510	-
		ZF 75	75	60	-
		ZF 90	90	75	-
	GA	ZF 120	120	90	-
	GA	ZF 180	180	150	-
		ZF 350	350	300	-
		ZF 450	450	385	-
		AZM 150	150	130	-
ASTM A 792	Galvalume	AZM 165	165	150	-
		AZM 180	180	155	-

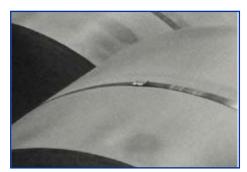
^{*}Normas citadas para efeito de referencia. Para informações adicionais, consulte a norma ou a equipe da Qualidade SETEFER.

5.6 Cristalizações (GI).


Durante a solidificação do zinco, acontece a cristalização. Existem dois tipos de cristalização, são elas:

Cristalização Normal ou Escamada: É obtida como resultado do **crescimento livre dos cristais de zinco**, durante a solidificação normal. Podem ocorrer diferentes tamanhos de cristal, falta de cristalização ou diferenças de brilho, dependendo das condições do processo. Tais condições não afetam a qualidade final do revestimento.

Cristalização Minimizada ou Lisa: É obtida como resultado da **limitação de crescimento dos cristais de zinco** por meios apropriados.


GI - Cristalização Normal

Galvalume

GI - Cristalização Minimizada

GA

10. CARACTERÍSTICAS DAS CHAPAS ZINCADAS

10.1 Tolerância de Espessura Chapas Zincadas Norma NBR 7013/13

Afastamento Superior e Inferior / Largura (mm)						
Espessura (mm)	L ≤ 1200	1200 < L ≤ 1500	L > 1500	L > 1200 - LE ≥ 280 MPa		
e ≤ 0,40	± 0,04	± 0,05	-	± 0,05		

$0,40 < e \le 0,60$	± 0,04	± 0,05	± 0,06	± 0,06
$0.60 < e \le 0.80$	± 0,05	± 0,06	± 0,07	± 0,06
$0.80 < e \le 1.00$	± 0,06	± 0,07	± 0,08	± 0,07
1,00 < e ≤ 1,20	± 0,07	± 0,08	± 0,09	± 0,09
1.20 < e ≤ 1,60	± 0,10	± 0,11	± 0,12	± 0,11
1,60 < e ≤ 2,00	± 0,12	± 0,13	± 0,14	± 0,14

^{*}Normas citadas para efeito de referencia. Para informações adicionais, consulte a norma ou a equipe da Qualidade SETEFER.

10.2 Tolerâncias de Largura Chapas Zincadas Norma NBR 7013/13

Largura	Bordas Naturais	Bordas Aparadas
L < 1200	+ 20	+ 5
1200 ≤ L < 1500	+ 20	+ 6
L ≥ 1500	+ 20	+ 7

^{*}Normas citadas para efeito de referencia. Para informações adicionais, consulte a norma ou a equipe da Qualidade SETEFER.

10.3 Tolerâncias de Comprimento Chapas Zincadas Norma NBR 7013/13

Comprimento	Tolerância
C ≤ 2000	+ 6
C > 2000	+ 0,003 X C

^{*}Normas citadas para efeito de referencia. Para informações adicionais, consulte a norma ou a equipe da Qualidade SETEFER.

25. CLASSIFICAÇÕES DOS DEFEITOS DE FORMA

A classificação dos defeitos de forma nas chapas e tiras processadas nos centros de serviços, os defeitos relacionados, são visíveis a olho nu e passiveis de classificação, de acordo com sua intensidade conforme norma NBR8269/89.

25.1 Abaulamento longitudinal (AL).

Conforme figura 1.

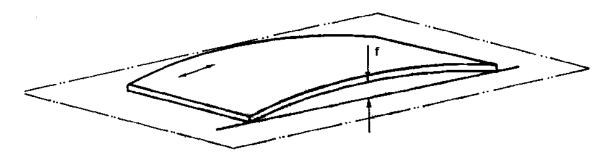


FIGURA 1 – Abaulamento Longitudinal

Abaulamento longitudinal tem a seguinte classificação:

- a) AL 02 ($f \le 2.0 \text{ mm}$);
- b) AL 04 (2.0 mm < f \leq 4.0 mm);
- c) $AL 08 (4.0 \text{ mm} < f \le 8.0 \text{ mm})$;
- d) AL 12 (8.0 mm < f \leq 12.0 mm);
- e) AL 16 ($12.0 \text{ mm} < f \le 16.0 \text{ mm}$);

Nota: O comprimento de referência para a medição da flecha (f) deve ser estabelecido por acordo prévio entre produtor e comprador.

25.2 Abaulamento transversal (AT).

Conforme Figura 2.

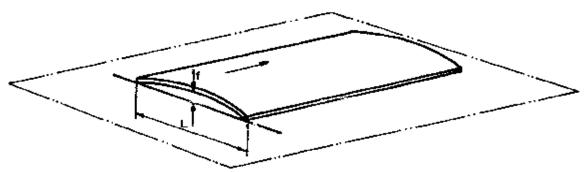


FIGURA 2 – Abaulamento Transversal

O abaulamento transversal tem a seguinte classificação:

- a) AT 0.15 (f $\leq 0.15\%$ L);
- b) AT $0.30 (0.15\% L < f \le 0.30\%);$
- c) AT 0.50 (0.30% L < f ≤ 0.50 %);
- d) AT $1.00 (0.50\% L < f \le 1.00\%);$
- e) AT -3.00 (1.00% L < f $\le 3.00\%$);

25.3 Abaulamento borda.

Este defeito, conforme figura 3, não é classificável em relação à intensidade, simplesmente deve-se constar sua presença ou não. Não é aceitável em materiais cortados nos centros de serviço.

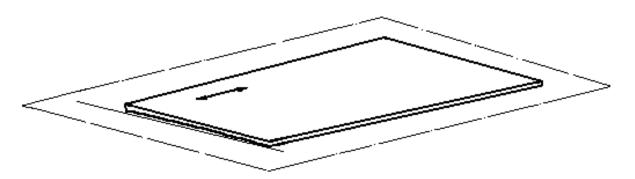


FIGURA 3 – Abaulamento de Borda

25.4 Ondulação total (OT).

Conforme figura 4.

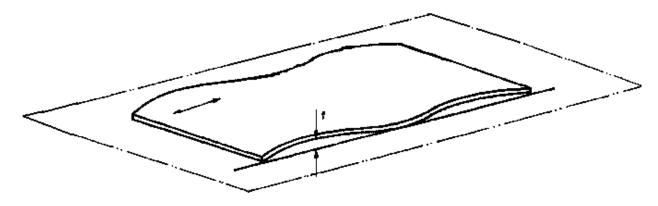


FIGURA 4 – Ondulação Total

A ondulação total tem a seguinte classificação:

- a) OT -02 (f ≤ 2.0 mm);
- b) OT 04 (2.0 mm $< f \le 4.0$ mm);
- c) OT -08 (4.0 mm $< f \le 8.0$ mm);
- d) OT 12 (8.0 mm < f \le 12.0 mm);
- e) OT 16 ($12.0 \text{ mm} < f \le 16.0 \text{ mm}$);

Nota: O comprimento de referência e o número de ondas para a medição da flecha (f) deve ser estabelecido por acordo prévio entre produtor e comprador.

25.5 Ondulação borda (OB).

Conforme figura 5.

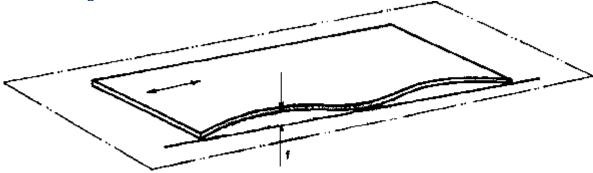
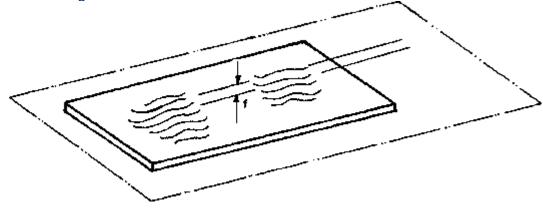


FIGURA 5 – Ondulação de Borda


A ondulação de borda tem a seguinte classificação:

- a) OB 02 (f \leq 2.0 mm);
- b) OB 04 (2.0 mm < f ≤ 4.0 mm);
- c) OB 08 (4.0 mm < f \leq 8.0 mm);
- d) OB 12 (8.0 mm < f \le 12.0 mm);
- e) OB 16 (12.0 mm < f \le 16.0 mm);

Nota: O comprimento de referência e o número de ondas para a medição da flecha (f) devem ser estabelecidos por acordo prévio entre produtor e comprador.

25.6 Ondulação central (OC).

Conforme figura 6.

FIGURA 6 – Ondulação de Central

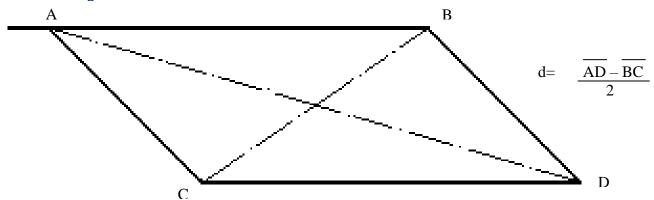
A ondulação central tem a seguinte classificação:

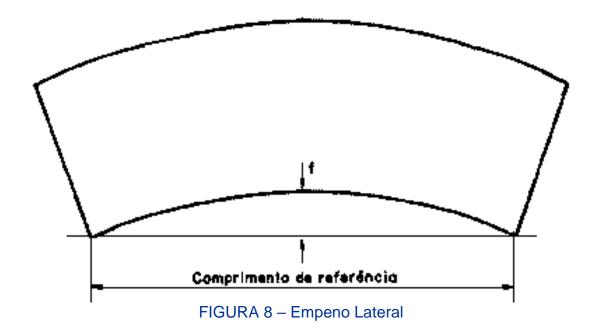
- a) OC 02 (f ≤ 2.0 mm); b) OC - 04 (2.0 mm < f ≤ 4.0 mm); c) OC - 08 (4.0 mm < f ≤ 8.0 mm); d) OC - 12 (8.0 mm < f ≤ 12.0 mm);
- f) OC 16 ($12.0 \text{ mm} < f \le 16.0 \text{ mm}$);

Nota: O comprimento de referência e o número de ondas para a medição da flecha (f) devem ser estabelecidos por acordo prévio entre produtor e comprador.

25.7 Desvio de esquadria (DE).

Conforme figura 7.




FIGURA 7 – Desvio de Esquadria

O desvio de esquadria tem a seguinte classificação:

```
a) DE - 02 (d \leq 2.0 mm);
b) DE - 04 (2.0 mm < f \leq 4.0 mm);
c) DE - 08 (4.0 mm < f \leq 8.0 mm);
d) DE - 10 (8.0 mm < f \leq 10.0 mm);
```

Nota: O comprimento nominal e a tolerância devem ser garantidos quando d = 0 mm.

25.8 Empeno lateral (EL). Conforme figura 8.

O empeno lateral tem a seguinte classificação:

```
a) EL-01 ( f \le 1.0 mm );
b) EL-02 ( 1.0 mm < f \le 2.0 mm );
c) EL-03 ( 2.0 mm < f \le 3.0 mm );
d) EL-04 ( 3.0 mm < f \le 4.0 mm );
e) EL-06 ( 4.0 mm < f \le 6.0 mm );
f) EL-08 ( 6.0 mm < f \le 8.0 mm );
g) EL-12 ( 8.0 mm < f \le 12.0 mm );
h) EL-16 ( 12.0 mm < f \le 16.0 mm );
i) EL-20 ( 16.0 mm < f \le 20.0 mm );
```

Nota: O comprimento de referencia e o numero de ondas para a medição da flecha (f), devem ser estabelecidos por acordo prévio entre o produtor e comprador.

25.9 Torção (TO).

Conforme figura 9.

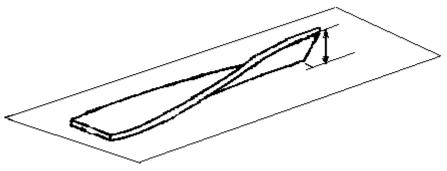


FIGURA 9 – Torção

A torção tem a seguinte classificação:

```
a) TO - 02 (f \leq 2.0 mm);
B TO - 04 (2.0 mm < f \leq 4.0 mm);
c) TO - 06 ( 4.0 mm < f \leq 6.0 mm );
d) TO - 08 ( 6.0 mm < f \leq 8.0 mm );
e) TO - 12 ( 8.0 mm < f \leq 12.0 mm );
f) TO - 16 ( 12.0 mm < f \leq 16.0 mm );
g) TO - 20 ( 16.0 mm < f \leq 20.0 mm );
```

Nota: O comprimento de referencia para a medição da flecha (f), devem ser estabelecidos por acordo prévio entre o produtor e comprador.